Jump to content

Recommended Posts

I have the following query:

 

SELECT `m`.*,
        COUNT(DISTINCT `d`.`id`) AS `num_a`,
        COUNT(DISTINCT `d1`.`id`) AS `num_s`,
        COUNT(DISTINCT `d2`.`id`) AS `num_o`,
        COUNT(DISTINCT `t`.`id_email`) AS `num_c`,
        COUNT(DISTINCT `t`.`id`) AS `num_l`
    FROM `mailout` AS `m`
        LEFT JOIN `mailout_details` AS `d`
            ON `m`.`id` = `d`.`id_mailout`
        LEFT JOIN `mailout_details` AS `d1`
            ON `m`.`id` = `d1`.`id_mailout`
            AND `d1`.`sent`='1'
        LEFT JOIN `mailout_details` AS `d2`
            ON `m`.`id` = `d2`.`id_mailout`
            AND `d2`.`opened`='1'
        LEFT JOIN `mail_tracking` AS `t`
            ON `d`.`id` = `t`.`id_email`
    GROUP BY `m`.`id`

 

which reads details about mails sent and counts all kinds of statistics

the problem is that now mailout_details has some 3000 records (which I don't think is a large number and shouldn't be a problem) and the query just takes forever to execute (on my local computer it takes 100% of my cpu).

what is the problem? ??? how can I optimize this query? i thought about storing `num_*` as columns and update them in my scripts so I don't have to do the counts, but this won't work as I have other queries that do the counts but based on other `group by`'s.

 

P.S. the DISTINCT's are not the problem. dropping them will lead to the same 100% CPU and never-ending query execution.

 

 

Please help, I really need to solve this quick, as client is complaining (page not working anymore)  :(

Link to comment
https://forums.phpfreaks.com/topic/41820-query-optimization-help/
Share on other sites

How many results are you getting? When this happens, its usually because tables are incorrectly joined and you get a Cartesian product. So if you had 3000 records in each table, you could get 3000  * 3000 or worse yet 3000 * 3000 * 3000 ... that will stuff up your server in a hurry.

The query is correct. It worked when there were less rows in the mailout_details table. The number of rows returned is equal to the number of records in the mailout table, witch is small (less than 10, or maybe even less than 5). But for each row it needs to get about 300 rows from each join and count them. That would be (5 joins * 300 rows each) * 10 main rows = 15000 rows fetched (but only 10 actual rows displayed due to the GROUP BY clause).

Here is the EXPLAIN output:

 

+----+-------------+-------+------+---------------------------------------------+--------------+---------+--------------------+------+----------------+
| id | select_type | table | type | possible_keys                               | key          | key_len | ref                | rows | Extra          |
+----+-------------+-------+------+---------------------------------------------+--------------+---------+--------------------+------+----------------+
|  1 | SIMPLE      | m     | ALL  | NULL                                        | NULL         |    NULL | NULL               |   15 | Using filesort |
|  1 | SIMPLE      | d     | ref  | id_mailout,id_mailout_2,id_mailout_3        | id_mailout   |       4 | theatre.m.id       |  305 |                |
|  1 | SIMPLE      | d1    | ref  | id_mailout,sent,id_mailout_2,id_mailout_3   | id_mailout_2 |       5 | theatre.m.id,const |  280 |                |
|  1 | SIMPLE      | d2    | ref  | id_mailout,opened,id_mailout_2,id_mailout_3 | id_mailout_3 |       5 | theatre.m.id,const |  280 | Using where    |
|  1 | SIMPLE      | t     | ref  | id_email                                    | id_email     |       4 | theatre.d.id       |    2 |                |
+----+-------------+-------+------+---------------------------------------------+--------------+---------+--------------------+------+----------------+

got help from another forum

I rewrote the query as:

SELECT m.*, det.* FROM mailout m
    LEFT JOIN (
        SELECT d.id_mailout,
            COUNT(d.id_mailout) AS `num_a`,
            SUM(
                CASE
                    WHEN d.sent = '1' THEN 1
                    ELSE 0
                END
            ) AS `num_s`,
            SUM(
                CASE
                    WHEN d.opened = '1' THEN 1
                    ELSE 0
                END
            ) AS `num_o`,
            COUNT(tr.id_email) AS `num_c`,
            SUM(tr.num_c) AS `num_l`
            FROM mailout_details d
        LEFT JOIN
            (SELECT t.id_email, COUNT(t.id_email) AS `num_c`
                FROM mail_tracking `t`
                GROUP BY t.id_email) tr
                ON tr.id_email = d.id
            GROUP BY d.id_mailout) det
        ON det.id_mailout = m.id

and now it works instantly.

 

but I have another slow query that doesn't optimize the same way:

SELECT `r`.*,
                COUNT(DISTINCT `d1`.`id`) AS `num_s`,
                COUNT(DISTINCT `d2`.`id`) AS `num_o`,
                COUNT(DISTINCT `t`.`id`) AS `num_c`
            FROM `recipients` AS `r`
                LEFT JOIN `mailout_details` AS `d`
                    ON `r`.`email` = `d`.`email`
                LEFT JOIN `mail_tracking` AS `t`
                    ON `d`.`id` = `t`.`id_email`
                LEFT JOIN `mailout_details` AS `d1`
                    ON `r`.`email` = `d1`.`email`
                    AND `d1`.`sent` = '1'
                LEFT JOIN `mailout_details` AS `d2`
                    ON `r`.`email` = `d2`.`email`
                    AND `d2`.`opened` = '1'
            $where
            GROUP BY `r`.`id`

This thread is more than a year old. Please don't revive it unless you have something important to add.

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.