Jump to content

Recommended Posts

Hi Guys,

 

I have a website primarily written in PHP that connects to a very large SQL database, which contains about 100 tables, some of which contain about 600,000 records. The website is designed to allow users to search the database, and all tables of the database, to retrieve resulting records from the posted search criteria. The search script works fine, and expected results are returned. However, as the size of the database grows, the access speed slows dramatically. Currently, after Submitting the search criteria a user has to wait about 2 minutes for the results to be returned.

 

In order to retrieve relevant records from each database table, I use an SQL SELECT statement with "UNION" to create an SQL statement that inspects every table in the database for matching records. I have spoken with my ISP who has recommended that I move to parallel processing in order to improve access times, using a series of servers to improve performance overall. However, before moving to that more costly solution, I am wondering if I could improve the performance by changing the way I query the database. One thought I had was to merge all of the records into a single database table, however that would become very large indeed, and may exceed the limits possible for table size (I am not sure what this is, but I would expect there would be an upper limit).

 

Would anyone know of some alternatives here, or perhaps some methods I could employ to improve performance?

 

Many thanks,

 

Scott.

Link to comment
https://forums.phpfreaks.com/topic/106010-mysql-access-speed-performance/
Share on other sites

Hi,

 

Just to follow up on my original post... I have now done the following things to attempt to improve performance, based on what I have read in the MySQL Performance documents on this forum:

 

1. Added an INDEX to all record ID's on all tables (although automatically this was set as a PRIMARY INDEX)

2. Changed my BIGINT (20)s to INT (8)s.

 

Further to this, should I index other columns? Users do not search for records by ID but rather all other columns, such as Name, Location, etc.. Can all of these columns be assigned an INDEX? Would this improve performance?

 

Also, all of my columns (asside from ID) are set to TEXT. Should I use VARCHAR instead? I believe this may also improve performance.

 

Thanks guys,

 

Scott.

Hi,

 

Just to follow up on my original post... I have now done the following things to attempt to improve performance, based on what I have read in the MySQL Performance documents on this forum:

 

1. Added an INDEX to all record ID's on all tables (although automatically this was set as a PRIMARY INDEX)

2. Changed my BIGINT (20)s to INT (8)s.

 

Further to this, should I index other columns? Users do not search for records by ID but rather all other columns, such as Name, Location, etc.. Can all of these columns be assigned an INDEX? Would this improve performance?

 

Also, all of my columns (asside from ID) are set to TEXT. Should I use VARCHAR instead? I believe this may also improve performance.

 

Thanks guys,

 

Scott.

1. Hopefully you didn't index the columns twice

2. You should use UNSIGNED INT, drop the display width.

 

You can use a fulltext index across multiple columns for MyISAM tables.

 

VARCHAR is much better than TEXT, especially in 5.0+, where you can use up to 65K.

 

Lastly, have you used the slow query log to locate the guilty queries? If so, post their eXPLAIN output.

Hello fenway,

 

Thankyou for you feedback. I have ensured that I have not doubled up on any indexing in the tables. Below is an example of the way I have a table setup:

 

Field                Type              Collation                Attributes    Null    Default      Extra

----------        ---------        ----------            ----------  -----  --------    --------

ID                  int(8)                                                        No                      auto_increment             

FirstName        varchar(50)    latin1_swedish_ci                    No     

LastName        varchar(50)    latin1_swedish_ci                    No     

RecordLink        varchar(100)    latin1_swedish_ci                    No               

Address1          varchar(50)    latin1_swedish_ci                    No

Address2          varchar(50)    latin1_swedish_ci                    No

City                varchar(50)    latin1_swedish_ci                    No

State              varchar(50)    latin1_swedish_ci                    No

Country          varchar(50)    latin1_swedish_ci                    No

Region            varchar(50)    latin1_swedish_ci                    No

Sex                varchar(50)    latin1_swedish_ci                    No               

Age                varchar(50)    latin1_swedish_ci                    No   

Status            varchar(50)    latin1_swedish_ci                    No

ContactTel      varchar(50)    latin1_swedish_ci                    No

Email              varchar(50)    latin1_swedish_ci                    No

Occupation      varchar(50)    latin1_swedish_ci                    No               

GeneralNotes    text              latin1_swedish_ci                    No

 

Note that the database data is made up from records that are available on a series of website pages, and a PHP series of PHP scripts that I have written scrape this data and place it in the database tables. Because some of the data is not "clean" I have allowed in most cases for 50 characters in each column, including telephone as there are some instances where this is not simply numeric data, but also includes a short comment.

 

Additionally, there are a number of database tables that are setup slightly differently to capture different data that is available on some of the pages scraped. This means that on some pages there is more information about a person, such as a date of birth, a company name, a position title, etc..

 

When a user performs a search through a simple form on a PHP page, my PHP search script assembles an SQL query (albeit an ugly one) that looks something like the following (in this example the user is searching for all people located in California between the ages of 21 and 29, who are Male):

 

SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table1 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table2 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table3 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table4 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table5 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table6 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table7 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table8 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table9 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, NULL AS `LastName`, `RecordLink` FROM people_table10 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' ORDER BY `FirstName` ASC LIMIT 1, 31

 

Note that this query has been cut down a fair but. This would usually show over 50 tables. To explain the above query, I have setup my script this way to check each table in sequence for the required records. You will note that there is an "NULL AS `LastName` in the last SELECT statement as people_table10 does not have a column `LastName`, and this prevents an SLQ error. Also, it is necessary to hold this data in separate tables like this because of the differing data available for each set of website pages scraped.

 

Also note that I use a LIKE operator for `City` because sometimes this includes extraneous data, like a country name as well, or a city name.

 

Please note that this SQL query works perfectly with a small number of records in the tables. However, now as I have over 4 million records, and this will grow alot more, the time it is taking to return results is very long indeed (> 5 minutes).

 

I have taken your earlier advise and changed my INT(8)s to UNSIGNED INT columns, however this has not made alot of difference that I can tell. Currently, my indexes look something like this on most of the tables:

 

Keyname    Type      Cardinality  Field

-------      -----      ---------- ------

PRIMARY    PRIMARY  0              ID 

Address1    INDEX    32245        Address1

Address2    INDEX    234          Address2

City          INDEX      325          City

State        INDEX      45            State

Country    INDEX      12            Country

Region      INDEX      7              Region

Sex          INDEX      2              Sex

Age          INDEX      76            Age

Status      INDEX      6              Status

Occupation INDEX    3785          Occupation

 

Note that I have not indexed columns that are not searchable by users (FirstName, LastName, etc..)

 

So, looking at all of this, is there anything here that is glaringly and obviously wrong? All tables are MyISAM tables. I am unsure what you mean by "You can use a fulltext index across multiple columns for MyISAM tables". I have basically just used MyPHPAdmin to add individual indexes to each column independently. Is this correct? Also, I am unsure how to use the "slow query log to locate the guilty queries". Unfortunately I am still finding my feet with all of this, and I do greatly appreciate your help.

 

Regards,

Scott.

Fenway,

 

Apologies, I have just read your posting guidelines, so I would like to add the following information:

 

1.

SQL version is 5.0

 

2.

The sample Raw SQL statement in code block:

SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table1 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table2 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table3 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table4 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table5 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table6 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table7 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table8 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, `LastName`, `RecordLink` FROM people_table9 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' UNION SELECT `FirstName`, NULL AS `LastName`, `RecordLink` FROM people_table10 WHERE `Sex` = 'Male' AND (`Age` >= '21' AND `Age` <= '29') AND `City` LIKE '%California%' ORDER BY `FirstName` ASC LIMIT 1, 31

 

3.

The SHOW CREATE TABLE METHOD gives the following for my example table structure:

CREATE TABLE `people_table1` (\n  `ID` int(8 ) NOT NULL auto_increment,\n  `FirstName` varchar(50) NOT NULL default '',\n  `LastName` varchar(50) NOT NULL default '',\n `RecordLink` varchar(100) NOT NULL default '',\n  `Address1` varchar(50) NOT NULL default '',\n  `Address2` varchar(50) NOT NULL default '',\n  `City` varchar(50) NOT NULL default '',\n  `State` varchar(50) NOT NULL default '',\n  `Country` varchar(50) NOT NULL default '',\n  `Region` varchar(50) NOT NULL default '',\n  `Sex` varchar(50) NOT NULL default '',\n  `Age` varchar(50) NOT NULL default '',\n  `Status` varchar(50) NOT NULL default '',\n  `ContactTel` varchar(50) NOT NULL default '',\n  `Email` varchar(50) NOT NULL default '',\n  `Occupation` varchar(50) NOT NULL default '',\n  `GeneralNotes` text NOT NULL default '',\n) ENGINE=MyISAM AUTO_INCREMENT=7 DEFAULT CHARSET=latin1

 

Many thanks,

Scott.

Fenway,

 

This is the output produced using my SQL query (43 tables in total are included in the SQL statement, whereas my example shows only 10):

 

id  select_type  table  type  possible_keys  key  key_len  ref  rows  Extra  
1 PRIMARY people_table1 ref Sex,Age Sex 50 const 392745 Using where 
2 UNION people_table2 ref Sex,Age Sex 50 const 354451 Using where 
3 UNION people_table3 ref Sex,Age Sex 50 const 39084 Using where 
4 UNION people_table4 range Sex,Age Age 50 NULL 1102 Using where 
5 UNION people_table5 range Sex,Age Age 50 NULL 786 Using where 
6 UNION people_table6 ref Sex,Age Sex 50 const 339 Using where 
7 UNION people_table7 range Sex,Age Age 50 NULL 60 Using where 
8 UNION people_table8 ref Sex,Age Sex 50 const 104274 Using where 
9 UNION people_table9 ref Sex,Age Sex 50 const 131437 Using where 
10 UNION people_table10 ref Sex,Age Sex 50 const 29301 Using where 
11 UNION people_table11 ALL NULL NULL NULL NULL 270756 Using where 
12 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
13 UNION people_table13 ref Sex,Age Sex 50 const 37295 Using where 
14 UNION people_table14 ref Sex,Age Sex 50 const 244851 Using where 
15 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
16 UNION people_table16 ref Sex,Age Sex 50 const 56158 Using where 
17 UNION people_table17 ref Age,Sex Sex 50 const 68 Using where 
18 UNION people_table18 ref Sex,Age Sex 50 const 1 Using where 
19 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
20 UNION people_table20 range Sex,Age Age 50 NULL 320 Using where 
21 UNION people_table21 ref Sex,Age Sex 50 const 8521 Using where 
22 UNION people_table22 ref Sex,Age Sex 50 const 81136 Using where 
23 UNION people_table23 ref Sex,Age Sex 50 const 12941 Using where 
24 UNION people_table24 ref Sex,Age Sex 50 const 135699 Using where 
25 UNION people_table25 ref Sex,Age Sex 50 const 75187 Using where 
26 UNION people_table26 ref Sex,Age Sex 50 const 129273 Using where 
27 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
28 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
29 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
30 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
31 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
32 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
33 UNION people_table33 range Sex,Age Age 50 NULL 241 Using where 
34 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
35 UNION people_table35 ALL NULL NULL NULL NULL 9 Using where 
36 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
37 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
38 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
39 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
40 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
41 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
42 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
43 UNION NULL NULL NULL NULL NULL NULL NULL Impossible WHERE noticed after reading const tables 
NULL UNION RESULT <union1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...> ALL NULL NULL NULL NULL NULL Using filesort 

 

Regards,

Scott.

Fenway,

 

I have tried to line up the items in this table to assist in viewing:

 

id   select_type  table            type   possible_keys  key   key_len  ref    rows    Extra  
--   -----------  -----            ----   -------------  ---   -------  ---    ----    -----
1    PRIMARY      people_table1    ref    Sex,Age        Sex   50       const  392745  Using where 
2    UNION        people_table2    ref    Sex,Age        Sex   50       const  354451  Using where 
3    UNION        people_table3    ref    Sex,Age        Sex   50       const  39084   Using where 
4    UNION        people_table4    range  Sex,Age        Age   50       NULL   1102    Using where 
5    UNION        people_table5    range  Sex,Age        Age   50       NULL   786     Using where 
6    UNION        people_table6    ref    Sex,Age        Sex   50       const  339     Using where 
7    UNION        people_table7    range  Sex,Age        Age   50       NULL   60      Using where 
8    UNION        people_table8    ref    Sex,Age        Sex   50       const  104274  Using where 
9    UNION        people_table9    ref    Sex,Age        Sex   50       const  131437  Using where 
10   UNION        people_table10   ref    Sex,Age        Sex   50       const  29301   Using where 
11   UNION        people_table11   ALL    NULL           NULL  NULL     NULL   270756  Using where 
12   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
13   UNION        people_table13   ref    Sex,Age        Sex   50       const  37295   Using where 
14   UNION        people_table14   ref    Sex,Age        Sex   50       const  244851  Using where 
15   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
16   UNION        people_table16   ref    Sex,Age        Sex   50       const  56158   Using where 
17   UNION        people_table17   ref    Age,Sex        Sex   50       const  68      Using where 
18   UNION        people_table18   ref    Sex,Age        Sex   50       const  1       Using where 
19   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
20   UNION        people_table20   range  Sex,Age        Age   50       NULL   320     Using where 
21   UNION        people_table21   ref    Sex,Age        Sex   50       const  8521    Using where 
22   UNION        people_table22   ref    Sex,Age        Sex   50       const  81136   Using where 
23   UNION        people_table23   ref    Sex,Age        Sex   50       const  12941   Using where 
24   UNION        people_table24   ref    Sex,Age        Sex   50       const  135699  Using where 
25   UNION        people_table25   ref    Sex,Age        Sex   50       const  75187   Using where 
26   UNION        people_table26   ref    Sex,Age        Sex   50       const  129273  Using where 
27   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
28   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
29   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
30   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
31   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
32   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
33   UNION        people_table33   range  Sex,Age        Age   50       NULL   241     Using where 
34   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
35   UNION        people_table35   ALL    NULL           NULL  NULL     NULL   9       Using where 
36   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
37   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
38   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
39   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
40   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
41   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
42   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
43   UNION        NULL             NULL   NULL           NULL  NULL     NULL   NULL    Impossible WHERE noticed after reading const tables 
NULL UNION        RESULT <union1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...> ALL NULL NULL NULL NULL NULL Using filesort 

 

Regards,

Scott.

Fenway,

 

Yes 43 tables currently, however as the number of websites that my site indexes (scrapes) continues to grow, so do the number of tables. The "Impossibles" seem to be each table that is in the database that currently have no records. These are yet to have any data placed in them.

 

With regard to your suggestion of a covering index for Sex,Age - Can you please tell me how a covering index is setup, different from my index that I have assigned to each column? Note also that the SQL query will differ depending on the search criteria the user selects when performing the search. In the example given, the user has selected Age >= 21 and Age <= 29, Sex=Male, and State LIKE California. I assume that if a user searches by other criteria, such as City, Country, Region, Status, etc... that covering indexes may also help to cover these combinations also.

 

This leads me to this question: Can I setup a number of covering indexes to cover most common search combination possibilities?

 

Many thanks,

Scott.

Thanks jordanwb,

 

I will give mysql_unbuffered_query a go. So far in my tests this appears to speed up the process somewhat. Another thought I had was to combine all of the tables into one table. Would a single SELECT statement working on one table (with say 25,000,000 rows) be more efficient than 50 SELECT statements joined together using UNION on 50 separate tables (with say 500,000 rows in each)?

 

Many thanks,

Scott.

Would a single SELECT statement working on one table (with say 25,000,000 rows) be more efficient than 50 SELECT statements joined together using UNION on 50 separate tables (with say 500,000 rows in each)?

Well, that's 50 times more overhead (client/server, result set object creation/deletion, etc.) -- but it really depends on how many rows match, how much data are returned, etc.

This thread is more than a year old. Please don't revive it unless you have something important to add.

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.